http://dx.doi.org/10.14236/ewic/ODAK22.1

A novel cough audio segmentation framework
for COVID-19 detection

Alice E. Ashby
University of Brighton
East Sussex, BN2 4GJ
United Kingdom
A.Ashby1@uni.brighton.ac.uk

Goran Soldar
University of Brighton
East Sussex, BN2 4GJ
United Kingdom
G.Soldar@brighton.ac.uk

Julia A. Meister
University of Brighton
East Sussex, BN2 4GJ
United Kingdom
J.Meister@brighton.ac.uk

Khuong An Nguyen
University of Brighton
East Sussex, BN2 4GJ
United Kingdom
khuong@cantab.net

Abstract: Despite its potential, Machine Learning has played little role in the present pandemic, due to the
lack of data (i.e., there were not many COVID-19 samples in the early stage). Thus, this paper proposes a
novel cough audio segmentation framework that may be applied on top of existing COVID-19 cough datasets
to increase the number of samples, as well as filtering out noises and uninformative data. We demonstrate
the efficiency of our framework on two popular open datasets.
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1. INTRODUCTION

One of the biggest roadblocks to scientific progress
is the restriction of access to data. In the context
of Machine Learning (ML) and Deep Learning (DL)
methodologies, research teams and scientists alike
may not develop training models without data.

When the COVID-19 pandemic took the world
by storm in 2020, researchers worldwide raced
to develop Artificial Intelligence (Al) solutions to
accompany existing detection methods including
antigen, molecular, and serological testing (such as
PCR, Lateral Flow Tests), and medical imaging (such
as X-Ray chest scan, lung ultrasound). Studies have
shown that coughs contain unique characteristics,
making it possible for diagnosis of COVID-19 via
analysis of coughs (Han et al., 2021; Pahar et
al., 2021). However, existing respiratory datasets
were not adequate enough to meet the requirements
needed for the feasibility of Al solutions in a clinical
setting to be examined for three reasons:

» Existing audio datasets containing cough
sounds, such as the Google Audio Set
(Gemmeke et al., 2017), do not specify the
diagnoses or pathologies of the coughs; the
lack of clinical metadata therefore making them
inappropriate.

» For datasets that do, often they have a sample
size that is too small, especially for data hungry
ML architectures. For example, NoCoCoDa is
a database of reflex cough sounds selected
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from media interviews of COVID-19 patients,
but only contains 10 unique subjects (Cohen-
McFarlane et al., 2020).

» Most existing COVID-19 cough datasets
contain noisy samples (i.e., numerous coughs
in the same recording, ambient noises, etc.)
making COVID-19 prediction challenging.

As a consequence, two and a half years in the
pandemic, there still has yet been any cough-based
COVID-19 detection tool available for the wider
public, at the time of writing.

1.1. Paper’s contributions
This paper makes the following contributions:

» We assess the current challenges of open
cough COVID-19 datasets.

» We propose a novel cough audio segmentation
framework that may be applied on top of
existing cough datasets to increase the number
of samples.

» We demonstrate the efficiency of our proposed
framework.

The remainder of the paper is organised as
follows. Section 2 discusses the inadequacy of
existing cough sound datasets, the collection of
crowdsourced cough sound datasets, and open
sourcing some of these datasets following open
data initiatives and standardisation to promote open
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research, respectively. Sections 3 and 4 discuss
our contribution of a proof-of-concept (POC) novel
audio pre-processing and segmentation tool, and
experimentation and evaluation of said tool on
two open-source COVID-19 cough sound datasets.
Lastly, Section 5 and 6 discuss related work in the
field of cough segmentation, and outline conclusions
and future works.

2. DATASETS OF COUGH SOUNDS

After 2 years since the pandemic, a number of
crowdsourced audio datasets containing cough,
breath, and speech sounds were collected by
various research teams via smartphone and web
applications (see Table 1).

University of Cambridge amassed 53,449 audio
samples, of which 2,106 are COVID-19 positive, from
36,116 participants via their smartphone app' in
their dataset named COVID-19 Sounds (Xia et al.,
2021). This dataset is only available to academic
institutions due to its sensitive nature.

Another curated dataset by the Wadhwani Institute
of Artificial Intelligence, Mumbai, consists of 3,117
coughs from 1,039 individuals (Bagad et al., 2020).
This dataset was intended to be publicly accessible,
but unfortunately was not due to legal constraints.

The Government of Buenos Aires, Argentina,
collected a clinically validated dataset called IATos
vl of 5,884 coughs from 2,821 individuals via
WhatsApp used in a clinical setting (Pizzo et al.,
2021). This dataset was one of the few that are
balanced, with 1,409 individuals testing positive for
COVID-19 and 1,412 testing negative. In 12/2021,
they collected an additional 140,530 coughs in a
second dataset called |IATos v2, this time imbalanced
with only 18,271 positive COVID-19 recordings.

The Indian Institute of Science (l1Sc), Bangalore,
began project Coswara, curating a dataset of 2,030
audio samples of deep and shallow cough sounds,
fast and slow breath sounds, and phonation of
sustained vowels, of which 343 are COVID-19
positive, through their web application? (Sharma et
al.,, 2020) (see Figure 1).

The Embedded Systems Laboratory (ESL) at Ecole
polytechnique fédérale de Lausanne (EPFL) col-
lected 27,550 cough recordings, of which 1,156 are
COVID-19 positive, through their web application®,
codenaming their curated, partially clinically vali-
dated dataset COUGHVID (Orlandic et al., 2021). A
cough detection algorithm was run on all audio files

Thttps://covid-19-sounds.org/en/ - last accessed in 5/2022.
2https://record.coswara.iisc.ac.in - last accessed in 5/2022.
Shttps://coughvid.epfl.ch - last accessed in 5/2022.

in the dataset, producing a probability of likeliness
that a cough is present (1.0 being likely, 0.0 being
unlikely) (Orlandic et al., 2021). This can be used to
filter data during pre-processing.

The Virufy Al Research Group are -currently
collecting cough sounds from multiple avenues,
including via a smartphone app* and clinical
collection in hospitals (Chaudhari et al., 2020;
?). This dataset was unreleased (save for a small
sample of clinically validated coughs; 121 coughs
from 16 participants, in which 48 coughs are COVID-
19 positive (Chaudhari et al., 2020)), and the
current number of samples kept private, though
the team has stated that they intend to open
source their datasets eventually. Additionally, the
Virufy Common Data Format (CDF) was developed
to standardise open-source datasets, i.e., to have
the same column names (see Table 2) with an
emphasis on clinical data, such as actual RT-PCR
test results (or inferred where data is not/partially
clinically validated) (Chaudhari et al., 2020).
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Figure 1: An oscillogram, spectrogram, and Mel-
spectrogram of an audio sample containing three 2-phase
coughs from the Coswara dataset.

3. AUDIO SEGMENTATION

Suppose we have an algorithm that isolates each
cough in an audio sample into its own audio
file. An original sample with n=10 coughs is split
into 10 cough samples, increasing the sample
count 10-fold. Necessary Digital Signal Processing
(DSP) techniques, such as normalisation and silence
removal, may be performed to remove uninformative
data. This is the basis of our contribution. We
believe that increasing the number of samples
in a dataset may theoretically improve baseline

“https://virufy.org/study/welcome - last accessed in 5/2022.
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Table 1: Summary of some existing COVID-19 cough datasets.

Dataset Name Institution

Samples COVID-19 Healthy Participants

COVID-19 Sounds

|1ATos v1 Government of Buenos Aires
IATos v2 Government of Buenos Aires
Coswara Indian Institute of Science (lISc)
COUGHVID ESL, EPFL, Switzerland

Virufy Virufy Al Research Group

University of Cambridge, UK
Cough Against Covid  Wadhwani Institute of Al, Mumbai

53,449 2,106 51,343 36,116
11,724 3,867 7,857 Unknown
16,626 8,268 8,358 2,771
140,530 18,271 122,259 Unknown
2,030 343 1,687 941
27,550 1,156 26,394 Unknown
121 48 73 16

Table 2: The Virufy Common Data Format (CDF) defines a column structure for dataset metadata. Benefits of standardisation
include faster and more efficient pre-processing of data, data filtering via cough_detected, and more emphasis on clinical
data such as pcr_test_result for clinically validated and pcr_test_result_inferred for partially clinically validated data.

Column Description

row Row number of data.

source Source of cough data.

patient_id Unique identifier for patient.

cough_detected Probability that the audio file contains an actual cough submission.
audio_path File path to the audio file containing patient’s cough submission.
audio_type Either cough or speech.

age Age of patient.

biological_sex
reported_gender
submission_date
pcr_test_date
pcr_result_date
respiratory_condition
fever_or_muscle_pain
pcr_test_result

Sex at birth of patient. The can be male, female, or NaN.

Reported gender of patient.

Date cough was submitted by patient.

Date PCR test for presence of COVID-19 was taken.

Date test result from the PCR test for presence of COVID-19 was received.
Boolean indicator of whether patient suffers from a respiratory condition.
Boolean indicator of whether patient was suffering from a fever or muscle pain.
Result of patient’'s PCR test for presence of COVID-19.

This can be positive, negative, recovered, Or untested.
pcr_test_result_inferred Best guess of a patient's COVID-19 diagnosis based on information specific
to the dataset source. Can be positive, negative, recovered, Or untested.

covid_symptoms

Boolean indicator of whether patient was experiencing COVID-19 symptoms.

accuracies (following the Law of Large Numbers) for
data hungry DL models such as neural networks, but
also general ML models if the data is of good quality.

Ensuring that data is clean and of a high quality is a
ubiquitous ML problem. This is because it has been
shown that noise can significantly skew prediction
performance by obscuring class-differentiating infor-
mation and therefore, reduce classification accuracy.
We have chosen to demonstrate our POC cough
segmentation tool on the open-source COVID-19
cough datasets Coswara (heavy recordings) and
COUGHVID, standardised by Virufy’s CDF. The
Coswara audio samples were encoded as WAV files
at 48kHz/16 bit PCM (Pulse-Code Modulation) and
the COUGHVID audio samples as WEBM files at
48kHz/16 bit PCM, though we converted these to
WAV files for consistency, using the ffmpeg pack-
age. Both datasets have a large variation in sample
duration (0.2-10 seconds), number of coughs per
sample (1-15 individual coughs), and background
noise levels. Thus, the proposed algorithm intends

to isolate individual coughs from each sample, re-
gardless of the sample duration, in turn removing any
background noise or silence present in the sample.

3.1. Cough event detection

To segment a time-series in a non-overlapping
manner, the starting point of the event to isolate
needs to be identified. This is known as onset
detection, where extreme changes in an audio
signal are located. The event here is a cough, the
most common form physiologically characterised by
three phases. During the first inspiratory phase,
air is drawn into the lungs. This is followed by
the compressive phase characterised by forced
expiratory effort against the closed glottis. Finally,
during the expiratory or expulsive phase, there is an
opening of the glottis and rapid outflow of air. This
sudden release of turbulent expiratory airflow is the
signature sound that the human ear would recognise
as a cough.
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However, the difficulty in cough segmentation comes
with the subtle differences between various cough
types. A type of cough known as a peal cough, for
example, is a cough that often occurs in epochs,
or bouts, defined as a cluster of two or more
cough sounds, separated from the next by an
interval of no more than 2 seconds. Therefore,
an epoch is where the initial inspiratory phase is
followed by a series of further compressive phases
associated with glottal closure, sometimes with
additional inspirations. Additionally, another type of
cough does not have a third phase, meaning that
every energy peak is an individual cough (Cohen-
McFarlane et al., 2020). Therefore, the difficulty in
cough detection is developing an algorithm than can
identify and accurately segment all of these cough
types in their entirety, rather than the individual
phases (Cohen-McFarlane et al., 2020). An analysis
and summary of how our algorithm handles this
variation are given in Sections 4 and 6 respectively.

3.2. Proposed segmentation framework

For cough onset detection, we select Root Mean
Square Energy (RMSE) as the underlying feature
as it may be interpreted as the signal’'s amplitude
or loudness (Meister et al., 2021). RMSE is
computed from the Short-Term Energy (STE), which
is the energy of a signal corresponding to the
total magnitude of the signal. Loudness is an
intuitive indicator for a cough event with relatively
low background noise levels. The audio feature in
Equation 1 describes a signal’s energy as a function
of its amplitude z in frame n.

RMSE, = /22 (1)

Given RMSE, the Python audio-processing package
librosa identifies any extreme changes in the
signal’s energy levels. We set a threshold whereby
the peak amplitude of a cough event may be
detected, but not the peak amplitudes of background
noise events, such as doors closing, vehicular traffic,
and conversation. However, one challenge with this
approach is the possibility that the beginning of
some cough events may be excluded. One attempt
to mitigate this is to use backtracking to move the
onset index back by a minuscule number of seconds
i.e., 10 milliseconds. For a trade-off between code
complexity and performance, we treat the second
cough’s onset as the first cough’s offset. We also
avoid detecting onsets in the last few frames of a
sample. The intuition is that some audio files have
a percussive peak at the end of the recording (i.e.,
button press of the recording device). The algorithm
has a number of parameters that can be configured
manually, divided between constants and variables.
These parameters are described in Table 3.

The cough samples have differences in amplitude,
thus, we normalise each sample between the range
(=1,1) to compensate. A cough has an average
duration of 350ms with an initial peak frequency
of 400Hz, a secondary peak of highest continuous
frequency 4kHz, and frequency components of
sound spread up to 20kHz (Murata et al., 1998).
To properly capture characteristic information of the
coughs, many studies include re-sampling the audio
samples to 8kHz, as it has been observed that most
of the frequency information of a cough sound is
between the range of 350Hz and 4kHz (Shin et
al., 2008), but this must be doubled according to
the Nyquist sampling theorem to avoid anti-aliasing.
However, whilst 8kHz may be adequate for feature
extraction and the generation of spectrograms for
classification, we wish to create a new dataset of
audible isolated coughs. Therefore, we select a
higher sampling rate of 22.05kHz.

4. EXPERIMENTAL RESULTS

This section demonstrates the performance of our
proposed cough segmentation framework on two
open cough COVID-19 datasets.

4.1. Evaluation metrics

According to Murata et al., (1998), cough events
are between 0.2 and 1 seconds. Therefore, we will
analyse how many isolated coughs fall within this
range; for those outside the range, we assume that
these have either not been correctly segmented, or
that background noise or silence was not adequately
removed. Additionally, we will use the Signal-to-
Noise Ratio (SNR) to access the reduction of
background noise which we consider uninformative
data. SNR in Equation 2 measures the average
power of the background noise and the average
power of the foreground sound, in this case a cough
event. It is measured on a logarithmic decibel scale,
where the higher the SNR score, the higher the
quality of the sample.

amplitudesignal > 2 B

SNERap =20 -10g1 < amplitudeno;

4.2. Experiments using COVID-19 open data

Prior to running the segmentation procedure, we
perform some diagnostic procedures to analyse
the performance of the onset detection algorithm.
Firstly, we demonstrate the difference between
using Max Normalisation, where the sample is
normalised between the range (0,1), and Min Max
Normalisation, where the sample is normalised
between the range (—1,1), with the Root Mean
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Table 3: A list of configurable constants and parameters used by the cough segmentation algorithm. Note that the constants
can only be changed in the source code, whereas the parameters can be set at runtime with each instance of the cough

segmentation tool created by the user.

Parameter Datatype Intuition

Sample Rate int The number of samples per second in kHz.
Frame Length int The number of samples in a frame.

Hop Length int The number of samples between frames.

Silence Threshold  int
RMSE Threshold int
Minimum Distance int

Backtrack float
Trim Frames bool
End Frames int

The threshold in dB below reference to consider as silence.

The threshold of Root Mean Square Energy from which onsets are detected.
The minimum distance between detected high RMSE frames.

The number of seconds to subtract from onset times.

A toggle to turn on functionality for trimming the last onset frames.

The number of onset frames to trim from the end of the audio file.

Square Energy (RMSE) and Short-Term Energy
(STE) of the signal graphed over the oscillogram
of the signal. Max Normalisation is a common
choice in the literature, but we proposed using Min
Max Normalisation as it performs better when the
sample contains any of the three cough types; 2-
phase, 3-phase, or peal. It worked particularly well
with peal coughs as demonstrated in Figure 2 with
coughs from the COUGHVID dataset, and Figure 3
with coughs from the Coswara (heavy recordings)
dataset, respectively. When Max Normalisation was
used, the third phase of a 2-phase cough, or the
epochs of a peal cough, was incorrectly identified
as individual coughs. This does not occur when Min
Max Normalisation was used.
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Figure 2: RMSE and STE graphed over an oscillogram of
a 3-phase and peal cough from the COUGHVID dataset.

Next, we set the constants and tune the parameters
of the onset detection algorithm (see Table 3. Table
4 outlines the constants used for all datasets. For the
COUGHVID and Coswara datasets, Table 5 lists the
optimal parameters for onset detection.

Sample 6d2och05 (max normalization)

Amplitude

Amplitude

Figure 3: RMSE and STE graphed over an oscillogram
of 2-phase, 3-phase, and peal coughs from the Coswara
(heavy recordings) dataset.

Table 4: The selected values for the constants of the onset
detection algorithm.

Constant Selected Value
Sample Rate 22,050
Frame Length 512
Hop Length 256
Silence Threshold 10

Table 5: The optimal parameters for the onset detection
algorithm with the 2 datasets.

Parameter COUGHVID Coswara
RMSE Threshold 0.6 0.5
Minimum Distance 50 60
Backtrack 0.01 0.01
Trim Frames True True
End Frames 1 1
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With parameter tuning done the onset detection
algorithm is run on 100 samples of the COUGHVID
and Coswara (heavy recordings) datasets and
the resulting oscillograms of 10 coughs from
COUGHVID and 10 from Coswara are shown in
Figures 4 and 5. Detected onsets are displayed on
the oscillograms as red vertical lines. We observed
that the algorithm worked well with both 2-phase and
3-phase coughs from both datasets, but could be
hypersensitive® to peal coughs, though this occurs
more in Coswara than in COUGHVID. Whilst this is
not a huge issue as the cough epoch still contains
informative data, some data is lost from not having
the full peal cough isolated in its entirety.

We found that our algorithm handles moderate
noisy conditions well. Most background noise events
were not classed as a cough, though with some
exceptionally loud noises, mis-classification did
occur. We go into more detail about how the effects
of this can be mitigated in Section 6.

Sample 1227b27b

05
00

Amplitude

-05

-1.0

Sample 9818791

05
0.0

Amplitude

-0.5

-1.0

Sample 152c6eas

05

00 | {

Amplitude

-0.5

-1.0

Time

Figure 4: Detected cough onsets displayed on oscillo-
grams of 2-phase, 3-phase, and peal coughs from the
COUGHVID dataset.

The next step is to test the full segmentation pipeline
comprising of onset detection, segmentation, pre-
processing, and exportation procedures on the
COUGHVID and Coswara datasets. We used a
subset of 100 samples from each dataset in
our segmentation experiment. The isolated audio
samples were exported to WAV format with a
sampling rate of 22.05kHz with a bit-depth of 16
bits. Our segmentation algorithm performed well,
with almost 90% of isolated samples being of a high-
quality, and under 25% of isolated samples being
discarded, for the COUGHVID dataset; and with over
80% of isolated samples being of a high-quality, and
under 30% of isolated samples being discarded, for
the Coswara dataset.

5By hypersensitive, we mean to say that the epochs of a peal
cough can be occasionally misidentified as a standalone cough.
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Figure 5: Detected cough onsets displayed on oscillo-
grams of 2-phase, 3-phase, and peal coughs from the
Coswara (heavy recordings) dataset.

4.3. Summary of results

To summarise, we evaluate the datasets produced
from COUGHVID and Coswara using the metrics
outlined above graphed as a comparison between
the original and isolated datasets.

Firstly, looking at the COUGHVID dataset, from our
subset of 100 samples, the mean average duration
is 8.4 seconds, decreasing to 0.9 seconds for the
isolated cough dataset. For Coswara, from our
subset of 100 samples, the mean average duration
is 6 seconds, decreasing to 0.8 seconds for the
isolated cough dataset. Therefore, we hypothesise
that the majority of isolated cough samples were
correctly segmented with both datasets, as the
average cough duration’s are both within the range
of 0.2 to 1 seconds assumption. This is further
supported by Figures 6 and 8. As for the cough
SNRs, the mean average SNR from our subset
of 100 COUGHVID samples is -76dB, compared
with -19dB from the isolated cough dataset. The
mean average SNR from our subset of 100 Coswara
samples is -74dB, compared with -19dB from the
isolated cough dataset. For both datasets the latter
is significantly higher, with Figure 7 and Figure
9 showing some isolated cough samples even
reaching an approximate SNR of 10dB (occured
more-so in Coswara). Therefore, we hypothesise that
the signal quality of the isolated cough samples is
better than that of the original samples which include
uninformative data i.e., background noise.

Lastly, we analyse the the class distributions of
both the COUGHVID and Coswara subsets of 100
samples, as well as the isolated cough datasets
produced from them. Here, we may analyse the class
distribution to see if the segmentation procedure
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Figure 6: Comparison of cough duration’s from
COUGHVID and the isolated cough dataset.
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Figure 7: Comparison of cough SNR’s from COUGHVID
and the isolated cough dataset.

Original Cough Samples Isolated Cough Samples

5 — A
i
n
0
et 5 et
£ g
3 3
0 20
5 10 —H-i—l_l
o | & | Htrefin =
2 4 6 8 10 12 o 1 2 3 4 5

Duration in seconds Duratien in seconds

Figure 8: Comparison of cough duration’s from Coswara
heavy and the isolated cough dataset.
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Figure 9: Comparison of cough SNR’s from Coswara
heavy and the isolated cough dataset.

has had an effect on the class imbalance (as both
datasets are imbalanced). From Figures 10 and 11,
we see that, the class imbalance has improved by
2.35% and 6.33% respectively. Our understanding
is that the segmentation procedure may positively

impact the class imbalance (by increasing the
frequency of samples in the positive class) by
segmenting an original positive sample into multiple
positive samples, and decreasing the proportion of
the negative class via quality filtering (negative class
samples are predominant and more likely to be
discarded for low-quality).
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Figure 10: Class distributions of COUGHVID and isolated
cough datasets.
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Figure 11: Class distributions of Coswara (heavy
recordings) and isolated cough datasets.

5. RELATED WORK

Cough segmentation to support COVID-19 detection
is still in its infancy. Nevertheless, there are relevant
work in other respiratory research, as follows.

Amrulloh et al., (2015) propose a complex
automated cough extraction methodology. The
process begins with noise reduction using a High
Pass Filter (HPF) and Power Subtraction Filter
(PSF). Next, the signal is processed into n sub-
blocks and extract the features Mel-Frequency
Cepstral Coefficients (MFCCs), Formant frequency,
Zero Crossing Rate (ZCR), Non-Gaussianity Score
(NGS), and Shannon entropy. The feature matrix is
then input into a trained Artificial Neural Network
classifier to differentiate sub-blocks into cough and
non-cough classes. Smoothing using a moving
average filter is followed by thresholding and cough
event identification. Infante et al., (2017) propose a
method where the data is first smoothed by applying
local regression using a 2" degree polynomial
model. A peak detection algorithm is applied to the
smoothed signal, and then each peak is analysed
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individually. The zero-crossing of the first derivative
is used to determine the cough onset, and the slope
of the trailing edge of the cough for the offset.

6. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a novel audio
segmentation framework for cough-based COVID-
19 detection. In optimal conditions, where cough
events are evenly spaced with low background
noise, our framework worked well on both 3-phase
coughs and 2-phase coughs, correctly isolating for
example a sample containing n=3 coughs into three
distinct audio files containing a single cough, with
normalised amplitudes and no uninformative data.

However, our algorithm still has limitations in this
POC stage. It is hypersensitive to some peal coughs
characterised as epochs, or clusters of two or more
cough sounds, identifying each as an individual
cough between 0.1 and 0.5 seconds. This was
because some frames within the epoch have a
high enough RMSE value to exceed the threshold,
whereby being classified as a standalone cough.
Increasing the threshold addressed this problem,
at the cost of some incorrectly identified onsets.
Adapting the algorithm to identify cough clusters as
opposed to individual cough sounds could mitigate
the limitation of hypersensitive onset detection, but
is outside the scope of this paper, and is considered
as a potential future work.
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